解题思路:根据一元二次方程根的情况与判别式△的关系确定x的取值.
∵a=1,b=2(2m+1),c=(2m+2)2,
∴△=b2-4ac=[2(2m+1)]2-4×1×(2m+2)2=-16m-12,
(1)∵方程有两个相等的实数根,
∴-16m-12=0,
解得m=-[3/4].
(2)∵方程有两个不相等的实数根,
∴-16m-12>0,
解得m<-[3/4].
(3)∵方程没有实数根,
∴-16m-12<0,
解得m>-[3/4].
点评:
本题考点: 根的判别式.
考点点评: 此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.