sinA+sinB+sinC=0
cosA+cosB+cosC=0
sinA+sinB=-sinC
cosA+cosB=-cosC
平方得
(sinA+sinB)^2=(sinC)^2 (1)
(cosA+cosB)^2=(cosC)^2 (2)
两式相加得
1+2sinAsinB+2cosAcosB+1=1
所以
2sinAsinB+2cosAcosB=-1
cos(A-B)=-1/2
(2)-(1)
(cosC)^2-(sinC)^2=(cosA+cosB)^2-(sinA+sinB)^2
cos2C=cos2A+cos2B+2cos(A+B)
sin²A+sin²B+sin²C
=3-( cos²A+cos²B+cos²C)
=3-3/2=3/2