设A,B坐标为(xA,yA),(xB,yB)
则xA^2 - yA^2/2 = 1
xB^2 - yB^2/2 = 1
上式-下式得
xA^2 - xB^2 = (yA^2 - yB^2)/2
(yA - yB)/(xA - xB) = 2(xA + xB)/(yA + yB)
M(1,2)是线段AB中点
且xA+xB = 2
yA+yB = 4
∴
(yA - yB)/(xA - xB) =1
∴AB斜率=1
AB中点是(1,2)
∴AB:y = x + 1
方程是x-y+1=0
CD是线段AB的垂直平分线
∴CD斜率是-1
CD方程为x+y-3=0