dy/dx+(x^2)y=x^2
对应齐次方程为:dy/dx+(x^2)y=0
dy/y=-(x^2)dx
Iny=-(x^3)/3+InC
In(y/C)=-(x^3)/3
y=Ce^[-(x^3)/3]=C(x)e^[-(x^3)/3]
dy/dx=C'(x)e^[-(x^3)/3]-(x^2)C(x)e^[-(x^3)/3]代入原方程
C'(x)e^[-(x^3)/3]-(x^2)C(x)e^[-(x^3)/3]+(x^2)C(x)e^[-(x^3)/3]=x^2
C'(x)e^[-(x^3)/3]=x^2
C'(x)=(x^2)e^[(x^3)/3]
C(x)=e^[(x^3)/3]+C
y=C(x)e^[-(x^3)/3]={e^[(x^3)/3]+C}e^[-(x^3)/3]
y=1+Ce^[-(x^3)/3]
x=2时,y=1
1=1+Ce^(-8/3),C=0
y=1
……
怪了,跟你解得一样