1/(n-1)×n×(n+1)=[1/(n-1)×n-1/n×(n+1)]/2
所以原式=(1/1x2-1/2x3)/2+(1/2x3-1/3x4)/2+(1/3x4-1/4x5)/2+……+(1/9x10-1/10x11)/2
=(1/1x2 -1/2x3+1/2x3 -1/3x4+1/3x4 -1/4x5+……+1/9x10-1/10x11)/2
=(1/1x2-1/10x11)/2
=27/110
1/(n-1)×n×(n+1)=[1/(n-1)×n-1/n×(n+1)]/2
所以原式=(1/1x2-1/2x3)/2+(1/2x3-1/3x4)/2+(1/3x4-1/4x5)/2+……+(1/9x10-1/10x11)/2
=(1/1x2 -1/2x3+1/2x3 -1/3x4+1/3x4 -1/4x5+……+1/9x10-1/10x11)/2
=(1/1x2-1/10x11)/2
=27/110