解题思路:首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.
在y=kx+3中令x=0,得y=3,
则函数与y轴的交点坐标是:(0,3);
设函数与x轴的交点坐标是(a,0),
根据勾股定理得到a2+32=25,
解得a=±4;
当a=4时,把(4,0)代入y=kx+3,得k=-[3/4];
当a=-4时,把(-4,0)代入y=kx+3,得k=[3/4].
故k的值为[3/4]或−
3
4.
点评:
本题考点: 待定系数法求一次函数解析式.
考点点评: 解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.