f(x)=x^3+bx^2+cx+d
f(0)=d,即切点坐标为(0,d)
f′(x)=3x^2+2bx+c
f(x)图像过点p(1,-3)
1+b+c+d=-3 ①
f(x)在点(0,f(0))的切线方程为9x+y-2=0
f′(0)=-9且(0,d)在直线9x+y-2=0上
c=-9 ②
d-2=0 ③
因此c=-9,d=2,b=3
f(x)=x^3+bx^2+cx+d
f(0)=d,即切点坐标为(0,d)
f′(x)=3x^2+2bx+c
f(x)图像过点p(1,-3)
1+b+c+d=-3 ①
f(x)在点(0,f(0))的切线方程为9x+y-2=0
f′(0)=-9且(0,d)在直线9x+y-2=0上
c=-9 ②
d-2=0 ③
因此c=-9,d=2,b=3