令g(x)=∫(a->x)f(x)dx.则g(a)=∫(a->a)f(x)dx=0,g(b)=∫(a->b)f(x)dx=0.
因此g(a)=g(b),根据rolle‘s定理得知存在c使得dg(c)/dx=0,即(d/dx)(∫(a->x)f(x))(在x=c)=f(c)=0
令g(x)=∫(a->x)f(x)dx.则g(a)=∫(a->a)f(x)dx=0,g(b)=∫(a->b)f(x)dx=0.
因此g(a)=g(b),根据rolle‘s定理得知存在c使得dg(c)/dx=0,即(d/dx)(∫(a->x)f(x))(在x=c)=f(c)=0