裂项求和的方法
n>2时
n²/(n²-1)
=1+1/[(n-1)(n+1)]
=1+(1/2)*[1/(n-1)-1/(n+1)]
所以,
1+2²/2²-1+3²/3²-1...+100²/100²-1
=1+1+(1/2)[1/1-1/3]+1+(1/2)[1/2-1/4)]+.+1+(1/2)[1/99-1/101]
=100+(1/2)*(1+1/2-1/100-1/101)
=100+(1/2)(3/2-201/10100)
=100+3/4-201/20200
裂项求和的方法
n>2时
n²/(n²-1)
=1+1/[(n-1)(n+1)]
=1+(1/2)*[1/(n-1)-1/(n+1)]
所以,
1+2²/2²-1+3²/3²-1...+100²/100²-1
=1+1+(1/2)[1/1-1/3]+1+(1/2)[1/2-1/4)]+.+1+(1/2)[1/99-1/101]
=100+(1/2)*(1+1/2-1/100-1/101)
=100+(1/2)(3/2-201/10100)
=100+3/4-201/20200