证明:∠ADC=∠BAC=90°;∠C=∠C.则⊿ACD∽⊿BCA,AB/AC=AD/CD;
作AM∥BC,交DF于M.
则AM/CD=AE/CE=1,AM=CD,故AB/AC=AD/AM;(1)
DE=AC/2=AE,则:∠ACE=∠DAE=∠B=∠FAM;
又∠F=∠F,则⊿AFM∽⊿DFA,DF/AF=AD/AM;(2)
∴AB/AC=DF/AF,AB*AF=AC*DF.
证明:∠ADC=∠BAC=90°;∠C=∠C.则⊿ACD∽⊿BCA,AB/AC=AD/CD;
作AM∥BC,交DF于M.
则AM/CD=AE/CE=1,AM=CD,故AB/AC=AD/AM;(1)
DE=AC/2=AE,则:∠ACE=∠DAE=∠B=∠FAM;
又∠F=∠F,则⊿AFM∽⊿DFA,DF/AF=AD/AM;(2)
∴AB/AC=DF/AF,AB*AF=AC*DF.