从编号为1,2,3,4,5的五个球中任取4个,放在标号为A、B、C、D的四个盒子里,每盒一球,且2号球不能放在B盒中,则

1个回答

  • 解题思路:若选出的4个球中没有2号球,则有

    A

    4

    4

    种方法;若选出的4个球中有2号球,则先安排2号球,有

    C

    3

    4

    C

    1

    3

    A

    3

    3

    种方法.再把求得的这两个值相加,即得所求.

    若选出的4个球中没有2号球,则有

    A44=24种方法;

    若选出的4个球中有2号球,则先安排2号球,有

    C34•

    C13•

    A33=96 种方法,

    故答案为96.

    点评:

    本题考点: 排列、组合及简单计数问题.

    考点点评: 本题考查排列组合及简单的计数原理的应用,综合利用两个原理解决是关键,属中档题.

相关问题