an=a1*q^(n-1)
q≠1,
a2+a1=a3,
a1q+a1=a1*q^2,
1+q=q^2,
q^2-q-1=0,
q=(1+√5)/2,q=(1-√5)/2,
an是由正数组成的等比数列(q=(1+√5)/2)
a3+a4=a1(q^2+q^3)
a4+a5=a1(q^3+q^4)
(a3+a4)/(a4+a5)
=a1(q^2+q^3)/a1(q^3+q^4)
=1/q=2/(1+√5)=√5-1
an=a1*q^(n-1)
q≠1,
a2+a1=a3,
a1q+a1=a1*q^2,
1+q=q^2,
q^2-q-1=0,
q=(1+√5)/2,q=(1-√5)/2,
an是由正数组成的等比数列(q=(1+√5)/2)
a3+a4=a1(q^2+q^3)
a4+a5=a1(q^3+q^4)
(a3+a4)/(a4+a5)
=a1(q^2+q^3)/a1(q^3+q^4)
=1/q=2/(1+√5)=√5-1