在直角三角形ABC中AB =13 AC=5
所以BC=12
以直线BC为轴旋转一周得到一个圆锥
则这个圆锥是以AC半径为底BC为高AB为母线的圆锥
S=πrl+πr^2=π*5*13+π*5*5=90π
以直线AC为轴旋转一周得到一个圆锥
则这个圆锥是以BC半径为底AC为高AB为母线的圆锥
S=πrl+πr^2=π*12*13+π*12*12=300π
过C点做AB的高交AB于D则CD=60/13 AD=25/13 BD=144/13(利用三个三角形相似来得到)
以直线AB为轴旋转一周得到一个圆锥
则这个两个圆锥组合图形是以CD半径为底AD为高AC为母线的圆锥+以CD半径为底BD为高BC为母线的圆锥
S=π*60/13*5+π*60/13*60/13+π*60/13*12+π*60/13*60/13=20460/169π