1.
[n+1][1/(1+x1) +1/(1+x2)+……+1/(1+xn)]=
=[(1+x1) +(1+x2)+……+(1+xn)][1/(1+x1) +1/(1+x2)+……+1/(1+xn)]≥n^2
==>
1/(1+x1) +1/(1+x2)+……+1/(1+xn)≥n^2/(n+1)
2.
x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)=
=[x1-1+1/(1+x1)]+[x2-1+1/(1+x2)]+...[xn-1+1/(1+xn)]=
=1-n+1/(1+x1) +1/(1+x2)+……+1/(1+xn)≥
≥1-n+n^2/(n+1)=1/(n+1)
3.
x1=x2=……=xn=1/n
==>
x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)=1/(n+1)