记g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-∫(0~x)f(t)(x-t)dt
即g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt
g'(x)=∫(0~x)f(t)dt-∫(0~x)f(t)dt-xf(x)+xf(x)=0
则g(x)=c(常数)
又g(0)=0
则g(x)=0
记g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-∫(0~x)f(t)(x-t)dt
即g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt
g'(x)=∫(0~x)f(t)dt-∫(0~x)f(t)dt-xf(x)+xf(x)=0
则g(x)=c(常数)
又g(0)=0
则g(x)=0