因式分解 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等 ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.ambmcm=m ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“”号,使括号内的第一项的系数是正的.⑵运用公式法 ①平方差公式:.a^2b^2=(ab)(ab) ②完全平方公式:a^22abb^2=(ab)^2 能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).④完全立方公式:a^33a^2b3ab^2b^3=(ab)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b++b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项,使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.⑸十字相乘法 ①x^2xpq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2xpq= ②kx^2mxn型的式子的因式分解 如果能够分解成k=ac,n=bd,且有adbc=m 时,那么 kx^2mxn= a /b ac=k bd=n c / d adbc=m 多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止.(6)应用因式定理:如果f=0,则f必含有因式.如f=x^2+5x+6,f=0,则可确定是x^2+5x+6的一个因式.