1.Sn^2=3*n^2*an+(Sn-1)^2
[Sn+Sn-1][Sn-Sn-1]=3n^2*an
[Sn+Sn-an]*an=3n^2*an
Sn+Sn -an=3n^2
Sn=3n^2/2+an/2
S(n+1)=3(n+1)^2/2+a(n+1)/2
a(n+1)=3(2n+1)/2+a(n+1)/2-an/2
a(n+1)=6n+3-an
a(n+2)=6n+9-a(n+1)
=6n+9-6n-3+an=6+an
所以a(n+2)-an=6
2.4Sn=an^2+4n-1
4S(n-1)=a(n-1)^2+4n-5
4an=an^2-a(n-1)^2+4
an^2-4an+4-a(n-1)^2=0
(an - 2)^2-a(n-1)^2=0
4a1=a1^2+3
a1=1或3
an -2 =a(n-1)或an-2=-a(n-1)
所以an=2n-1或2n+1或1