解题思路:(1)首先运用勾股定理求出AB边的长度,然后根据路程=速度×时间,分别表示出BQ、PB的长度;
(2)由于∠B=90°,如果△PBQ为等腰三角形,那么只有一种情况,即BP=BQ,由(1)的结果,可列出方程,从而求出x的值;
(3)根据四边形APQC的面积=△ABC的面积-△PBQ的面积,列出方程,根据解的情况即可判断.
(1)∵∠B=90°,AC=10,BC=6,
∴AB=8.
∴BQ=x,PB=8-2x;
(2)由题意,得
8-2x=x,
∴x=[8/3].
∴当x=[8/3]时,△PBQ为等腰三角形;
(3)假设存在x的值,使得四边形APQC的面积等于20cm2,
则
1
2×6×8-
1
2x(8-2x)=20,
解得x1=x2=2.
假设成立,所以当x=2时,四边形APQC面积的面积等于20cm2.
点评:
本题考点: 一元二次方程的应用.
考点点评: 本题借助动点问题考查了勾股定理,路程与速度、时间的关系,等腰三角形的性质以及不规则图形的面积计算,综合性较强.