(1)用归纳法证明An=(n+1)/n当n=1时A1=(1+1)/1=2显然成立.假设Ak=(k+1)/k,则有Ak+1=2-1/Ak=2-1/(k+1)/k=《(k+1)+1》/(k+1)即Ak+1也成立,则假设成立.即的证An=(n+1)/n (2)令Bn=An+1/An=n(n+2)/(n+1)²=1-1/(n+1)²>1-1/n(n+2)显然成立(因为(n+1)²>n(n+2) Bn>1-1/2《1/n-1/(n+2)》又因为Tn=A(n+1)/An的求和所以Tn>n-1/2《(1-1/3)+(1/2-1/4)+(1/3-1/5)+.+(1/n-1/(n+2))》=n-1/2《1+1/2-1/(n+1)-1/(n+2)》>n-1/2(1+1/2)=n-3/4即的证.《这个符号代替中挂号
已知数列An满足a1=2 A(n+1)=2-1/An 求:令Tn=An/A(n+1)的求和,证明T
1个回答
相关问题
-
已知数列{an}满足a1=1,且an+1=an/2an+1(n属于N*Tn=a1a2+a2a3求证Tn
-
已知数列{an}满足a1=1,a(n+1)=an+√((an)^2+1),令an=tanθn(0
-
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
-
已知数列{an}满足a1=1.a2=2,(a(n+1)+an)/an=(a(n+2)-an+1)/an+1 n∈N* 求
-
已知数列{an}满足a1=1,a2=3,an+1=3an-2an-1(n≥2且n∈N‘’),令bn=
-
已知数列{an}满足a1=2,a2=2,a(n+2)=[a(n+1)+an]/2,n∈整数,令bn=a(n+1)-an,
-
已知数列{an}满足a1=1/2,a(n+1)=an+1/n^2+n,求an.
-
已知数列an满足a1=2,an=a(n-1)+2n,(n≥2),求an
-
已知数列{an}满足an+1=(2+n)an/n +1 证明an/n是等差数列 a1=1
-
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明an=3n-1/2.