集合A表示函数x=t²+(a+1)t+b=[t+(a+1)/2]²+b-(a+1)²/4的值域,即x≥b-(a+1)²/4,
集合B表示函数x=-t²-(a-1)t-b=-[t+(a-1)/2]²-b+(a-1)²/4,即x≤-b+(a-1)²/4.
则有:
b-(a+1)²/4=-1且-b+(a-1)²/4=2,解得a=-1,b=-1.
集合A表示函数x=t²+(a+1)t+b=[t+(a+1)/2]²+b-(a+1)²/4的值域,即x≥b-(a+1)²/4,
集合B表示函数x=-t²-(a-1)t-b=-[t+(a-1)/2]²-b+(a-1)²/4,即x≤-b+(a-1)²/4.
则有:
b-(a+1)²/4=-1且-b+(a-1)²/4=2,解得a=-1,b=-1.