当a、b、c成等差数列时,2b=a+c,再由余弦定理可得:2sinB=sinA+sinC;
2sinB=sinA+sinC → 2sinB=2sin[(A+C)/2]*cos[(A-C)/2] → 2sin(B/2)*cos(B/2)=cos(B/2)*cos[(A-C)/2];
即 sin(B/2)cos[(A-C)2/],∴ B/2=(A-C)/2,A=B+C,∴ B+C=120°;
向量m•向量n=1*sinC-√3*cosC=2sin(C -60°);
∵ 0
当a、b、c成等差数列时,2b=a+c,再由余弦定理可得:2sinB=sinA+sinC;
2sinB=sinA+sinC → 2sinB=2sin[(A+C)/2]*cos[(A-C)/2] → 2sin(B/2)*cos(B/2)=cos(B/2)*cos[(A-C)/2];
即 sin(B/2)cos[(A-C)2/],∴ B/2=(A-C)/2,A=B+C,∴ B+C=120°;
向量m•向量n=1*sinC-√3*cosC=2sin(C -60°);
∵ 0