〔f(x1)+f(x2)〕/2=〔tanx1+tanx2〕/2
=(sinx1/cosx1+sinx2/cosx2)/2
=(sinx1cosx2+cosx1sinx2)/(2cos1cos2)
=sin(x1+x2)/(2cosx1cosx2)
f【(x1+x2)/2】=tan〔(x1+x2)/2〕
=sin(x1+x2)/〔1+cos(x1+x2)〕
=sin(x1+x2)/(1+cosx1cosx2-sinx1sinx2)
因为x1,x2∈【0,π/2】,则sin(x1+x2)≥0,cosx1cosx2≥0
又因为1≥cos(x1-x2),即1-sinx1sinx2≥cosx1cosx2≥0
所以1+cosx1cosx2-sinx1sinx2≥2cosx1cosx2
所以〔f(x1)+f(x2)〕/2≤f【(x1+x2)/2】