判断函数y=f(x)=(x^2-1)/x在区间(0,正无穷大)上的单调性,并用定义证明你的结论
设x2>x1>0,那么 f(x2)-f(x1)= (x2^2-1)/x2 -(x1^2-1)/x1
=[x1(x2^2-1)-x2(x1^2-1)]/x1x2
=[x1x2^2-x1-x2x1^2+x2] /x1x2
=[ x1x2(x2-x1)+(x2-x1)] /x1x2
x2-x1>0
所以 f(x2)-f(x1)>0
即f(x)在(0,+00)为单调递增
判断函数y=f(x)=(x^2-1)/x在区间(0,正无穷大)上的单调性,并用定义证明你的结论
设x2>x1>0,那么 f(x2)-f(x1)= (x2^2-1)/x2 -(x1^2-1)/x1
=[x1(x2^2-1)-x2(x1^2-1)]/x1x2
=[x1x2^2-x1-x2x1^2+x2] /x1x2
=[ x1x2(x2-x1)+(x2-x1)] /x1x2
x2-x1>0
所以 f(x2)-f(x1)>0
即f(x)在(0,+00)为单调递增