(2014•四川)已知函数f(x)=sin(3x+[π/4]).

1个回答

  • 解题思路:(1)令 2kπ-[π/2]≤3x+[π/4]≤2kπ+[π/2],k∈z,求得x的范围,可得函数的增区间.

    (2)由函数的解析式可得 f([α/3])=sin(α+[π/4]),又f([α/3])=[4/5]cos(α+[π/4])cos2α,可得sin(α+[π/4])=[4/5]cos(α+[π/4])cos2α,化简可得 (cosα-sinα)2=[5/4].再由α是第二象限角,cosα-sinα<0,从而求得cosα-sinα 的值.

    (1)∵函数f(x)=sin(3x+[π/4]),令 2kπ-[π/2]≤3x+[π/4]≤2kπ+[π/2],k∈z,

    求得 [2kπ/3]-[π/4]≤x≤[2kπ/3]+[π/12],故函数的增区间为[[2kπ/3]-[π/4],[2kπ/3]+[π/12]],k∈z.

    (2)由函数的解析式可得 f([α/3])=sin(α+[π/4]),又f([α/3])=[4/5]cos(α+[π/4])cos2α,

    ∴sin(α+[π/4])=[4/5]cos(α+[π/4])cos2α,即sin(α+[π/4])=[4/5]cos(α+[π/4])(cos2α-sin2α),

    ∴sinαcos[π/4]+cosαsin[π/4]=[4/5](cos2α-sin2α)•

    点评:

    本题考点: 两角和与差的余弦函数;正弦函数的单调性.

    考点点评: 本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.