2x^2+xy-y^2-4x+5y-6如何因式分解?

2个回答

  • 用十字相乘法法,把y作为常数,x 做降幂排列.

    原式=2x2+(y-4)x+(-y2+5y-6)

    =2x2+(y-4)x+[-(y2-5y+6)]

    =2x2+(y-4)x+[-(y-2)(y-3)]

    作十字分解,如下:

    1 y-3

    2 -y+2

    则:

    原式=[1x+(y-3)][2x+(-y+2)]

    =(x+y-3)(2x-y+2)

    验算,结果=2x2-xy+2x+2xy-y2+2y-6x+3y-6

    =2x2+xy-y2+5y-6=题目的式子 无误