设二维连续型随机变量(X,Y)在区域D={(x,y)|x>0,y>0,y=1-2x}上服从均匀分布,试求(X,Y)的联合

1个回答

  • 有点麻烦,牵涉到一些概率论术语.我帮你做出来再详细解释下.

    随机变量XY的联合概率密度为:f(x,y)=4,(x,y属于D)或0 (其它),(二维均匀分布的概率密度都是这样算,即1/D的面积).联合分布函数就是对概率密度求二次积分.书上公式是—无穷到x和-无穷到y,对于这道题就是0到x,和0到y.最后答案就是4xy (x,y属于D)或0(其它).