(1)∫[-1,1]f(x)dx
=∫[-1,1]A/√(1-x^2)dx
=A*[arcsinx]|[-1,1]
=A*[π/2-(-π/2)]
=πA
=1
A=1/π
(2)P{-1/2≤X≤1/2}
=∫[-1/2,1/2]f(x)dx
=1/π*[arcsinx]|[-1/2,1/2]
=1/π*[π/6-(-π/6)]
=1/π*π/3
=1/3
(3)F(x)=∫f(x)dx
=∫1/π*/√(1-x^2)dx
=1/π*arcsinx+C
(1)∫[-1,1]f(x)dx
=∫[-1,1]A/√(1-x^2)dx
=A*[arcsinx]|[-1,1]
=A*[π/2-(-π/2)]
=πA
=1
A=1/π
(2)P{-1/2≤X≤1/2}
=∫[-1/2,1/2]f(x)dx
=1/π*[arcsinx]|[-1/2,1/2]
=1/π*[π/6-(-π/6)]
=1/π*π/3
=1/3
(3)F(x)=∫f(x)dx
=∫1/π*/√(1-x^2)dx
=1/π*arcsinx+C