f(x) = x/[1+e^(1/x)],x≠0,
= 0,x=0,
由于
f(0-0) = lim(x→0-){x/[1+e^(1/x)}]
= 0/(1+0) = 0,
f(0+0) = lim(x→0+){x/[1+e^(1/x)}]
= lim(x→0+){[xe^(-1/x)]/[e^(-01/x)+1}]
= 0/(1+0) = 0,
有
f(0-0) = f(0+0) = 0,
得知 f 在 x=0 处连续;又
f-'(0) = lim(x→0-)[f(x)-f(0)]/x
= lim(x→0-){1/[1+e^(1/x)}]
= 1,
f+'(0)= lim(x→0+)[f(x)-f(0)]/x
= lim(x→0+){1/[1+e^(1/x)}]
= lim(x→0+){[e^(-1/x)]/[e^(-01/x)+1}]
= 0,
有
f-'(0) ≠ f+'(0),
即 f 在 x=0 处不可导。