1,n^2+3n+1=(n+2)*n+n+2-1
=(n+2)(n+1)-1
n^2+3n+1=n(n+3)+1
(n^2+3n+1)^2=[(n+2)(n+1)-1]*[n(n+3)+1]
=n(n+1)(n+2)(n+3)-n^2-3n+n^2+3n+2-1
=n(n+1)(n+2)(n+3)+1
x=y
2,无图
1,n^2+3n+1=(n+2)*n+n+2-1
=(n+2)(n+1)-1
n^2+3n+1=n(n+3)+1
(n^2+3n+1)^2=[(n+2)(n+1)-1]*[n(n+3)+1]
=n(n+1)(n+2)(n+3)-n^2-3n+n^2+3n+2-1
=n(n+1)(n+2)(n+3)+1
x=y
2,无图