解题思路:先根据AD是⊙O的直径,得∠ABD=90°,再根据三角形的内角和定理求出∠ADB的度数,最后由圆周角定理得∠ACB.
∵AD是直径,
∴∠ABD=90°,
∴∠ADB=180°-∠ABD-∠DAB=40°,
∴∠ACB=∠ADB=40°.
故选C.
点评:
本题考点: 圆周角定理;直角三角形的性质.
考点点评: 本题考查了圆周角定理和直角三角形的性质,题目比较典型,属于简单题型.
解题思路:先根据AD是⊙O的直径,得∠ABD=90°,再根据三角形的内角和定理求出∠ADB的度数,最后由圆周角定理得∠ACB.
∵AD是直径,
∴∠ABD=90°,
∴∠ADB=180°-∠ABD-∠DAB=40°,
∴∠ACB=∠ADB=40°.
故选C.
点评:
本题考点: 圆周角定理;直角三角形的性质.
考点点评: 本题考查了圆周角定理和直角三角形的性质,题目比较典型,属于简单题型.