系数矩阵A=
1 2 4 -3
3 5 6 -5
4 5 -2 3
r2-3r1,r3-4r1
1 2 4 -3
0 -1 -6 4
0 -3 -18 15
r1+2r2,r3-3r2,r2*(-1)
1 0 -8 5
0 1 6 -4
0 0 0 3
r3*(-1/3),r1-5r3,r2+4r3
1 0 -8 0
0 1 6 0
0 0 0 1
所以方程组的基础解系为 (8,-6,1,0)^T
通解为: k(8,-6,1,0)^T
PS. 矩阵最后一行对应的方程为 d = 0
系数矩阵A=
1 2 4 -3
3 5 6 -5
4 5 -2 3
r2-3r1,r3-4r1
1 2 4 -3
0 -1 -6 4
0 -3 -18 15
r1+2r2,r3-3r2,r2*(-1)
1 0 -8 5
0 1 6 -4
0 0 0 3
r3*(-1/3),r1-5r3,r2+4r3
1 0 -8 0
0 1 6 0
0 0 0 1
所以方程组的基础解系为 (8,-6,1,0)^T
通解为: k(8,-6,1,0)^T
PS. 矩阵最后一行对应的方程为 d = 0