设终值为S,年金为A,利率为i,期数为n:
S=A+A(1+i)+……+A(1+i)^n-1
此等式两边同乘以1+i得:
1+iS=A(1+i)+A(1+i)^2……+A(1+i)^n
后式减前式可得:
iS=A(1+i)^n-A
则有:S=A[(1+i)^n-1]/i
其实这就是个首项为A,公比为(1+i),项数为n的等比数列的和,直接套用公式:
首项×(1-公比的n次方)÷(1-公比)
即可得出.
设终值为S,年金为A,利率为i,期数为n:
S=A+A(1+i)+……+A(1+i)^n-1
此等式两边同乘以1+i得:
1+iS=A(1+i)+A(1+i)^2……+A(1+i)^n
后式减前式可得:
iS=A(1+i)^n-A
则有:S=A[(1+i)^n-1]/i
其实这就是个首项为A,公比为(1+i),项数为n的等比数列的和,直接套用公式:
首项×(1-公比的n次方)÷(1-公比)
即可得出.