1、∫dx/(1-x)^2
=∫d(x-1)/(x-1)^2
=-1/(x-1)+C
2、∫x√(1+2x^2)dx
=1/4*∫√(1+2x^2)d(1+2x^2)
=1/4*2/3*(1+2x^2)^(3/2)+C
=1/6*(1+2x^2)^(3/2)+C
3、∫xdx/√(1-x^2)
=-1/2*∫d(1-x^2)/√(1-x^2)
=-1/2*2*√(1-x^2)+C
=-√(1-x^2)+C
1、∫dx/(1-x)^2
=∫d(x-1)/(x-1)^2
=-1/(x-1)+C
2、∫x√(1+2x^2)dx
=1/4*∫√(1+2x^2)d(1+2x^2)
=1/4*2/3*(1+2x^2)^(3/2)+C
=1/6*(1+2x^2)^(3/2)+C
3、∫xdx/√(1-x^2)
=-1/2*∫d(1-x^2)/√(1-x^2)
=-1/2*2*√(1-x^2)+C
=-√(1-x^2)+C