(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0微分方程求通解

2个回答

  • (e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0,

    (e^x)(e^y-1)dx+(e^y)(e^x-1)dy=0,

    (e^x)dx/(e^x-1)=-(e^y)dy/(e^y-1),

    [d(e^x-)]/(e^x-1)=- [d(e^y-1)]/(e^y-1),

    两边积分,得ln(e^x-1)+C=-ln(e^y-1),即ln(e^x-1)+ln(e^y-1) +C=0,(C为任意常数)

    故ln[(e^x-1)(e^y-1)] +C=0,(C为任意常数).

    -----------------------------------------

    代入原方程验证,正确.[因(e^x-1).>0,(e^y-1)>0]