g(x)=x+1/x+1≥2√(x*1/x)+1=3在[1/2,2]的最小值为g(1)=3
故f(1)=3,即p+q=2
又因为f(x)在[1/2,2]的最小值在x=1处取得,则x=1必须为f(x)的对称轴,
否则,根据图像,最小值一定在端点处取得(1/2或2)
所以-p/2=1,p=-2,q=4
f(x)=x^2-2x+4=(x-1)^2+3在[1/2,2]的最大值为f(2)=4
g(x)=x+1/x+1≥2√(x*1/x)+1=3在[1/2,2]的最小值为g(1)=3
故f(1)=3,即p+q=2
又因为f(x)在[1/2,2]的最小值在x=1处取得,则x=1必须为f(x)的对称轴,
否则,根据图像,最小值一定在端点处取得(1/2或2)
所以-p/2=1,p=-2,q=4
f(x)=x^2-2x+4=(x-1)^2+3在[1/2,2]的最大值为f(2)=4