由题:an值域(0,1/2]则bn>0,不等式变形有:2bn=2ln(1+an)+an^2
已知an=n/(2^n),bn=ln(1+an)+1/2 an^2,证明,对一切n∈N*,2/(2+an)<an/bn成
1个回答
相关问题
-
已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn
-
a[n+1]=(an+bn)/2,b[n+1]=2anbn(/an+bn 是这样的 {ln[an+2/an-2]}
-
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
-
已知数列{an}中,a1=35,an=2−1an−1(n≥2,n∈N+),数列{bn}满足:bn=1an−1(n∈N+)
-
(1)在数列{an},a1=2,an=2an-1+2n+1(n≥2,n∈N*),令{bn}= an/2n,求证:{bn}
-
设数列{an},{bn}满足a1=1/2,2na(n+1)=(n+1)an,且{bn}=ln(1+an)+1/2an^2
-
设数列an,bn满足an+bn=2n+(2/2^n),an-bn=2n-(2/2^n)(n属于R)若cn=an*bn,求
-
设数列{An}和{bn}满足A1=1/2,2nA(n+1)=(n+1)An,且Bn=ln(1+An)+1/2(An)2,
-
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sn
-
已知a1=1,a2=4,an+2=4an+1+an,bn=an+1an,n∈N*