解题思路:直接利用二倍角的余弦函数,化简函数的表达式,通过函数的周期的求法求解即可.
因为函数y=cos2ωx-sin2ωx=cos2ωx,它的最小正周期是4π,所以[2π/2ω=4π,
解得ω=
1
4].
故答案为:[1/4]
点评:
本题考点: 二倍角的余弦;三角函数的周期性及其求法.
考点点评: 本题考查二倍角的余弦公式,三角函数的周期性的求法,考查计算能力.
解题思路:直接利用二倍角的余弦函数,化简函数的表达式,通过函数的周期的求法求解即可.
因为函数y=cos2ωx-sin2ωx=cos2ωx,它的最小正周期是4π,所以[2π/2ω=4π,
解得ω=
1
4].
故答案为:[1/4]
点评:
本题考点: 二倍角的余弦;三角函数的周期性及其求法.
考点点评: 本题考查二倍角的余弦公式,三角函数的周期性的求法,考查计算能力.