(1+cosx)/(1-cosx)-(1-cosx)/(1+cosx)
=[(1+cosx)^2-(1-cosx)^2]/[(1+cosx)(1-cosx)]
=[1+2cosx+(cosx)^2-1+2cosx-(cosx)^2]/[1-(cosx)^2]
=4cosx/(sinx)^2
=4/(sinxtanx)
(1+cosx)/(1-cosx)-(1-cosx)/(1+cosx)
=[(1+cosx)^2-(1-cosx)^2]/[(1+cosx)(1-cosx)]
=[1+2cosx+(cosx)^2-1+2cosx-(cosx)^2]/[1-(cosx)^2]
=4cosx/(sinx)^2
=4/(sinxtanx)