对任意x属于R,函数f(x)满足f(x+1)=根号下{2f(x)-[f(x)]2}+1,设an=[f(n)]2-2f(n

1个回答

  • f(x+1)=√[2f(x)-f(x)²] +1

    f(x+1)-1=√[2f(x)-f(x)²]

    算术平方根有意义,f(x+1)-1≥0 f(x+1)≥1

    x为任意实数,x+1为任意实数,f(x)≥1

    2f(x)-f(x)²≥0 f(x)[2-f(x)]≥0

    f(x)≥1,2-f(x)≥0 f(x)≤2

    综上,得1≤f(x)≤2

    [f(x+1)-1]²=2f(x)-f(x)²

    f(x+1)²-2f(x+1)+1=2f(x)-f(x)²

    [f(x+1)²-2f(x+1)]+[f(x)²-2f(x)]=-1,为定值.

    an=f(n)²-2f(n),数列{an}是等和数列.(不是等差数列)

    数列奇数项=a1,偶数项=a2

    S2013=a1+a2+a3+a4+...+a2013

    =(a1+a2)+(a3+a4)+...+(a2011+a2012)+a2013

    =(-1)×2012/2 +a2013

    =-1006+a2013=-4027/4

    a2013=1006-4027/4=-3/4

    f(2013)²-2f(2013)=-3/4

    整理,得

    4f(2013)²-8f(2013)+3=0

    [2f(2013)-1][2f(2013)-3]=0

    f(2013)=1/2(1≤f(x)≤2,舍去)或f(2013)=3/2

    f(2013)=3/2