3、
证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.
∴∠BFE=∠CED.
∴∠BEF=∠EDC.
在△EBF与△DCE中,
∠BFE=∠CE
DEF=ED
∠BEF=∠EDC
∴△EBF≌△DCE(ASA).
∴BE=CD.
∴BE=AB.
∴∠BAE=∠BEA=45°.
∴∠EAD=45°.
∴∠BAE=∠EAD.
∴AE平分∠BAD.
3、
证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.
∴∠BFE=∠CED.
∴∠BEF=∠EDC.
在△EBF与△DCE中,
∠BFE=∠CE
DEF=ED
∠BEF=∠EDC
∴△EBF≌△DCE(ASA).
∴BE=CD.
∴BE=AB.
∴∠BAE=∠BEA=45°.
∴∠EAD=45°.
∴∠BAE=∠EAD.
∴AE平分∠BAD.