令a=b=0得2f(0)=2f(0)*f(0){两边消}因为f(0)≠0.
故f(0)=1
令a=-b代入f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2],得
f(a)+f(-a)=2f(0)*f[(a-(-a))/2],
即
f(a)+f(-a)=2f(0)*f(a)=2f(a)
即f(a)+f(-a)=2f(a)
f(a)=f(-a),
因为定义域为任意数
故该f(x)为偶函数
令a=b=0得2f(0)=2f(0)*f(0){两边消}因为f(0)≠0.
故f(0)=1
令a=-b代入f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2],得
f(a)+f(-a)=2f(0)*f[(a-(-a))/2],
即
f(a)+f(-a)=2f(0)*f(a)=2f(a)
即f(a)+f(-a)=2f(a)
f(a)=f(-a),
因为定义域为任意数
故该f(x)为偶函数