连接OC、OA,OC=OA(半径)
∵OA是半径,PA是切线,
∴OA⊥PA,即△PAO是Rt△
又∵AD⊥OP
∴Rt△PAO∽Rt△PAD∽Rt△AOD
∴AD²=PD.OD
OA²=OP.OD
PA²=PD.OP
又∵PBC为圆O的割线
∴PA²=PB.PC(切割线定理)
∴PD.OP=PB.PC
在△PCO和△PBD中
PD.OP=PB.PC(PD/PC=PB/OP)
又∠CPO共用
∴△PCO∽△PBD
OC=OA,OA²=OP.OD
∴OC²=OP.OD
在△PCO和△COD中
OC²=OP.OD(OC/OP=OD/OC)
又∠COP共用
∴△PCO∽△COD
∴△PBD∽△COD
∴PD/CD=BD/OD
即BD.CD=PD.OD
∴AD²=PD.OD=BD.CD