如图,△ABC中,∠BAC=90°,AB=AC,点D是BC的一点.

1个回答

  • (1)证明:做AO⊥BC于O,做EF⊥BC于F,设∠OAD = α ;AD = DE=m

    则∠EDF=αOA = DF=m*cosαOD=FE = m*sinα

    ∵OC=OA=DF∴OC-DC = DF-DC即:OD = CF

    又∵OD = EF∴ CF=EF∴RT△CFE为等腰直角三角形. 即∠ECF = 45°

    又∵ ∠ACB = 45°∴ ∠ACE = 90°即:CE⊥AC

    (2)做MH⊥BC于H,做AO⊥BC于O,即H为DC中点

    ∵N为BD中点,则NH = 1/2BC = OC = OA∴NH-OH = OC-OH即:ON=HC

    ∵HC=MH∴MH=ON∠AON=∠NHM=90°∴ △AON≌△NHM

    ∴AN=NM∠NAO=∠MNH∵在RT△AON中,∠NAO + ∠ANO = 90°

    ∴∠MNH+∠ANO =90°即:AN⊥MN

    总之,MN与AN之间的关系是即相等也垂直!