(1)证明:做AO⊥BC于O,做EF⊥BC于F,设∠OAD = α ;AD = DE=m
则∠EDF=αOA = DF=m*cosαOD=FE = m*sinα
∵OC=OA=DF∴OC-DC = DF-DC即:OD = CF
又∵OD = EF∴ CF=EF∴RT△CFE为等腰直角三角形. 即∠ECF = 45°
又∵ ∠ACB = 45°∴ ∠ACE = 90°即:CE⊥AC
(2)做MH⊥BC于H,做AO⊥BC于O,即H为DC中点
∵N为BD中点,则NH = 1/2BC = OC = OA∴NH-OH = OC-OH即:ON=HC
∵HC=MH∴MH=ON∠AON=∠NHM=90°∴ △AON≌△NHM
∴AN=NM∠NAO=∠MNH∵在RT△AON中,∠NAO + ∠ANO = 90°
∴∠MNH+∠ANO =90°即:AN⊥MN
总之,MN与AN之间的关系是即相等也垂直!