|sin3x|=sin|3x| 还有|2sin3x|大于等于1

1个回答

  • 1.因为 sin |3x| =|sin 3x| ≥0,

    所以 2kπ ≤ |3x| ≤2kπ +π,k∈Z.

    又因为 |3x| ≥0,

    所以 2kπ ≤ |3x| ≤2kπ +π,k=0,1,2,...

    所以 2kπ /3 ≤ x ≤(2k +1)π /3,k=0,1,2,...

    或 -(2k +1)π /3 ≤x ≤ -2kπ /3,k=0,1,2,...

    经检验,以上两式均为 原不等式的解集.

    即原不等式的解集为

    [ -(2k +1)π /3,-2kπ /3 ] U [ 2kπ /3 ,(2k+1)π /3 ],k=0,1,2,...

    = = = = = = = = =

    2.原不等式即

    2 sin 3x ≥1,或 2 sin 3x ≤ -1,

    即 sin 3x ≥1/2,或 sin 3x ≤ -1/2.

    由 y =sin 3x 的图象知,

    2kπ +π/6 ≤3x ≤2kπ +5π/6,k∈Z

    或 2kπ +7π/6 ≤3x ≤2kπ +11π/6,k∈Z

    即 (12k +1)π /18 ≤x ≤(12k +5)π /18,k∈Z

    或 (12k +7)π /18 ≤x ≤(12k +11) /18,k∈Z

    即原不等式的解集为

    [ (12k +1)π /18,(12k +5)π /18 ] U [ (12k +7)π /18,(12k +11)π /18 ].

    = = = = = = = = =

    以上计算可能有误.

    利用三角函数的图象来解不等式.