请看图片:x0dx0d
计算:limn^2[(k/n)-(1/n+1)-(1/n+2)-……-(1/n+k)]
1个回答
相关问题
-
设数列{1n}满足:当n=2k-2(k∈N*)时,1n=n;当n=2k(k∈N*)时,1n=1k;记
-
lim(n→∞)∑(k=1,n)1/√n^2+k
-
lim n^2{(k/n)-(1/n+1)-(1/n+2)-.-(1/n+k)}(其中K是与N无关的常数)
-
lim n^2(k/n-1/n+1-1/n+2-.-1/n+k)(其中K是与N无关的常数)
-
证明:(n+1)!/k!-n!/(k-1)!=(n-k+1)*n!/k!(k≤n)
-
lim(1/(n²+1)+2/(n²+1)+…… +2k/(n²+1))=? (k为与n无
-
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求
-
极限求教lim n^2(k/n - 1/(n+1) - 1/(n+2) -……- 1/(n+k) k为与n无关的正整数
-
∏(k从1到n-1)sin(kπ/n) = n / 2^(n-1)
-
证明:1+[1/2]+[1/3]+[1/4]+…[1/2n−1]>[n/2](n∈N*),假设n=k时成立,当n=k+1