(1)因为EF为AB边沿BC边平移后对应线段,所以ABEF为平行四边形,所以∠AFE=∠ABC=80度.
(2)设∠FBC=X,所以∠AFB=X,∠AGB=∠BFE=80-X.
因为ABEF为平行四边形,所以∠BAF=180-80=100,∠ABG=180-100-(80-X)=X,
因为BG平分∠ABD,所以∠DBG=∠ABG=∠FBC=∠AFB=∠DBF=1/4∠ABC=20(度)
(3)由题可知,∠AEM=∠BFM,∠ACM=∠BCM,∠BAN=∠CAN,∠BFN=∠CFN,
∠N=180-∠NAF-∠AFN=∠NFC+∠BAN=1/2∠BFC+1/2∠BAC,
,∠FMC=180-∠CFM-∠FCM=∠MCB+∠AFM=1/2∠BCA+1/2∠AFB,
因为∠BFC+∠BAC+∠BCA+∠AFB=∠BAC+∠BCA+∠ABC=180,
所以∠N+∠FMC=1/2*180=90(度)