设f1,f2分别为椭圆c的左右焦点,过点f2的直线l与椭圆相交于a b两点60°

1个回答

  • 设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦点F1(-c,0),F2(c,0),

    由AF2=2F2B(改题了)得

    B(c+h,√3h),A(c-2h,-2√3h)在椭圆上,

    ∴(c+h)^2/a^2+3h^2/b^2=1,①

    (c-2h)^2/a^2+12h^2/b^2=1,②

    ②-①,(3h^2-6ch)/a^2+9h^2/b^2=0,h≠0,

    ∴(h-2c)/a^2+3h/b^2=0,(3a^2+b^2)h=2b^2c,h=2b^2c/(3a^2+b^2),

    代入①,9c^2(a^2+b^2)^2+12a^2b^2c^2=a^2(3a^2+b^2)^2,c^2=a^2-b^2,

    ∴(a^2-b^2)(9a^4+30a^2b^2+9b^4)=a^2(9a^4+6a^2b^2+b^4),

    化简得15a^4-22a^2b^2-9b^4=0,

    ∴a^2=9b^2/5,c=2b/√5,

    F1(-2b/√5,0)到直线l:y=√3(x-2b/√5)的距离=2b√(3/5)=2√3,

    ∴b=√5,a^2=9,

    ∴椭圆C的方程是x^2/9+y^2/5=1.