函数列fn(x)在定义域D上一致收敛,收敛到函数f(x),定义如下:
任取ε>0,存在N>0,使得当n>N时,对任意的x∈D,有
|fn(x)-f(x)|N,只要取(0,1)上的点1/(2n),fn(x)=1/(n*1/(2n))=2
所以fn(x)在(0,1)上不一致收敛.
函数列fn(x)在定义域D上一致收敛,收敛到函数f(x),定义如下:
任取ε>0,存在N>0,使得当n>N时,对任意的x∈D,有
|fn(x)-f(x)|N,只要取(0,1)上的点1/(2n),fn(x)=1/(n*1/(2n))=2
所以fn(x)在(0,1)上不一致收敛.