∫[1,2] (x² - 2x - 3)/x dx
= ∫[1,2] (x - 2 - 3/x) dx
= (x²/2 - 2x - 3ln|x|)_[1,2]
= (2²/2 - 2(2) - 3ln2) - (1/2 - 2 - 3ln(1))
= 2 - 4 - 3ln2 - 1/2 + 2 + 0
= -1/2 - 3ln2
∫[1,2] (x² - 2x - 3)/x dx
= ∫[1,2] (x - 2 - 3/x) dx
= (x²/2 - 2x - 3ln|x|)_[1,2]
= (2²/2 - 2(2) - 3ln2) - (1/2 - 2 - 3ln(1))
= 2 - 4 - 3ln2 - 1/2 + 2 + 0
= -1/2 - 3ln2