如果原题是:“若a^2+b^2+4a-6b+13=0,试求a^b的值”的话,解法如下:
a^2+b^2+4a-6b+13=0
a^2+4a+4+b^2-6b+9=0
(a^2+4a+4)+(b^2-6b+9)=0
(a + 2)^2 + (b - 3)^2 = 0
所以
(a + 2)= 0 且 (b - 3)= 0
即 a = -2 ,b = 3
所以,
a^b = (-2)^3 = -8
如果原题是:“若a^2+b^2+4a-6b+13=0,试求a^b的值”的话,解法如下:
a^2+b^2+4a-6b+13=0
a^2+4a+4+b^2-6b+9=0
(a^2+4a+4)+(b^2-6b+9)=0
(a + 2)^2 + (b - 3)^2 = 0
所以
(a + 2)= 0 且 (b - 3)= 0
即 a = -2 ,b = 3
所以,
a^b = (-2)^3 = -8